Modelling of Inter-sample Variation in Flow Cytometric Data with the Joint Clustering and Matching (JCM) Procedure

نویسندگان

  • Sharon X. Lee
  • Geoffrey J. McLachlan
  • Saumyadipta Pyne
چکیده

We present an algorithm for modelling flow cytometry data in the presence of large inter-sample variation. Large-scale cytometry datasets often exhibit some within-class variation due to technical effects such as instrumental differences and variations in data acquisition, as well as subtle biological heterogeneity within the class of samples. Failure to account for such variations in the model may lead to inaccurate matching of populations across a batch of samples and poor performance in classification of unlabelled samples. In this paper, we describe the Joint Clustering and Matching (JCM) procedure for simultaneous segmentation and alignment of cell populations across multiple samples. Under the JCM framework, a multivariate mixture distribution is used to model the distribution of the expressions of a fixed set of markers for each cell in a sample such that the components in the mixture model may correspond to the various populations of cells, which have similar expressions of markers (that is, clusters), in the composition of the sample. For each class of samples, an overall class template is formed by the adoption of random-effects terms to model the inter-sample variation within a class. The construction of a parametric template for each class allows for direct quantification of the differences between the template and each sample, and also between each pair of samples, both within or between classes. The classification of a new unclassified sample is then undertaken by assigning the unclassified sample to the class that minimizes the distance between its fitted mixture density and each class density as provided by the class templates. We use a symmetric form of the Kullback-Leibler distance for this purpose. We show and demonstrate on four real datasets how the JCM procedure can be used to carry out the tasks of automated clustering and alignment of cell populations, and supervised classification of samples. Key terms Flow cytometry, Classification, Class template, Inter-sample variation, Clustering, Matching, Skew mixture models, EM algorithm, JCM

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised Classification of Flow Cytometric Samples via the Joint Clustering and Matching (JCM) Procedure

We consider the use of the Joint Clustering and Matching (JCM) procedure for the supervised classification of a flow cytometric sample with respect to a number of predefined classes of such samples. The JCM procedure has been proposed as a method for the unsupervised classification of cells within a sample into a number of clusters and in the case of multiple samples, the matching of these clus...

متن کامل

Joint Modeling and Registration of Cell Populations in Cohorts of High-Dimensional Flow Cytometric Data

In biomedical applications, an experimenter encounters different potential sources of variation in data such as individual samples, multiple experimental conditions, and multivariate responses of a panel of markers such as from a signaling network. In multiparametric cytometry, which is often used for analyzing patient samples, such issues are critical. While computational methods can identify ...

متن کامل

Permeability estimation from the joint use of stoneley wave velocity and support vector machine neural networks: a case study of the Cheshmeh Khush Field, South Iran

Accurate permeability estimation has always been a concern in determining flow units, assigning appropriate capillary pressure andrelative permeability curves to reservoir rock types, geological modeling, and dynamic simulation.Acoustic method can be used as analternative and effective tool for permeability determination. In this study, a four-step approach is proposed for permeability estimati...

متن کامل

Centralized Clustering Method To Increase Accuracy In Ontology Matching Systems

Ontology is the main infrastructure of the Semantic Web which provides facilities for integration, searching and sharing of information on the web. Development of ontologies as the basis of semantic web and their heterogeneities have led to the existence of ontology matching. By emerging large-scale ontologies in real domain, the ontology matching systems faced with some problem like memory con...

متن کامل

Sensitivity Analysis of Stress and Cracking in Rock Mass Blasting using Numerical Modelling

Drilling and blasting have numerous applications in the civil and mining engineering. Due to the two major components of rock masses, namely the intact rock matrix and the discontinuities, their behavior is a complicated process to be analyzed. The purpose of this work is to investigate the effects of the geomechanical and geometrical parameters of rock and discontinuities on the rock mass blas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015